The MODIS Operational Cloud Products: Data Sets, Algorithms, and Examples

Steve Platnick

NASA Goddard Space Flight

Center Greenbelt MD

MODIS Data Workshop Sede Boker, Israel 3-6 November 2008

Outline

MODIS true-color daily composite

- Perspective: Why clouds? What can we infer from satellites?
- Overview MODIS cloud products
- Cloud detection and height retrievals
- Cloud optical and microphysical retrievals and examples (Level-2, -3) from the Collection 5 algorithm

When it comes to using remote sensing data (or any data), a little bit of knowledge can be a dangerous thing!

ask questions

Why Cloud Observations?

There are a number of fundamental reasons:

- Establishing climate quality data records
- Radiation budget studies (e.g., CERES/MODIS/GEO)
- Water budget/cycle studies (e.g., role of ice clouds and convection in UTH)
- Establishing data sets for climate and weather forecast validation, and model parameterization development
- Data assimilations
- Cloud process studies, including aerosol-cloud interactions
- Atmospheric chemistry (effect on photochemistry, Liu et al., 2006)

Cloud Products and Techniques

Cloud detection/masking

 Multispectral and/or multiview imagers with appropriate spatial resolution, lidar, radar

Cloud thermodynamic phase

- Multispectral imagers w/SWIR and/or IR (8.5 µm) bands, polarimeters w/multiangular views and good spatial resolution, lidars w/depolarization capability
- Cloud top properties: pressure, temperature, effective emissivity
 - Multispectral and/or multiview imagers (thermal window, CO₂ bands, other gas absorbing bands), UV imagers, polarimeters
- Cloud optical & microphysical properties: optical thickness, τ , effective particle size, $r_{\rm e}$, water path
 - Solar reflectance imagers (r_e from 1.6, 2.1, 3.7 μ m bands)
 - IR imager and sounder retrievals of τ , $r_{\rm e}$ for thin clouds
 - Polarimeter w/multiangular views (r_e)
 - Microwave radiometers (water path)

Cloud Products and Techniques, cont.

- Cloud vertical structure: geometric information & optical/ microphysical properties
 - Radar (water content profile), lidar (extinction profile)
- Drizzle detection and precipitation
 - Radar, microwave imagers

Pixel level products (Level-2)

- Cloud mask. S. Ackerman, R. Frey, U. Wisconsin/CIMSS

 1km, 48-bit mask/11 spectral tests, clear sky confidence in bits 1,2
- Cloud top properties: pressure, temperature, effective emissivity. P. Menzel,
 R. Frey, NOAA-NESDIS & U. Wisconsin/CIMSS
 5 km, CO₂ slicing for high clouds, 11 μm for low clouds
- Cloud optical & microphysical properties: optical thickness, τ , effective particle size, $r_{\rm e}$, water path, thermodynamic phase. Primary $r_{\rm e}$ from 2.1 μ m band. *M. D. King, S. Platnick, GSFC*
- IR-derived thermodynamic phase. B. Baum, U. Wisconsin/SSEC, SDS name
 Cloud_Phase_Infrared (day, night, and combined)
- Cirrus reflectance (via 1.38 μm band). B.-C. Gao, Naval Res. Lab, SDS name Cirrus_Reflectance
- Gridded & time-averaged products (Level-3): statistics, histograms, contains all atmosphere products (clouds, aerosol, clear sky aggregations)

Some things to Ponder

Some cloud retrievals considered basic and fundamental are illdefined

– What is a cloud mask? What is a cloud (depends on the part of the spectrum, among other things)? Cloud phase? Cloud-top height (radar vs. lidar vs. IR vs. polarization)? Cloud effective particle size (local quantity, not vertically integrated as with τ)?

What Do We Mean by a Cloud Detection?

What is a cloud? It depends! What is considered a cloud in some applications may be defined as clear in other applications.

Detection of clouds is also a function of instrument capability and algorithm design. Cloud detection is a function of contrast between the target (e.g. cloud) and the background. Contrast can be:

Spatial: Large FOVs are generally more uniform lowering contrast.

Temporal: Clouds can be detected in a sequence of images if the clouds are moving.

Spectral: Spectral contrast is determined by the radiative properties of the cloud and surface.

What Do We Mean by a Cloud Mask?

What Do We Mean by a Cloud Mask?

						Overcast Cloud Mask		
			Clo	ud				
	\							
		Pa	artly Cl	oudy				
	Cle	ar						
CI	ear Sk	y Mask						
								1

What Do We Mean by a Cloud Mask?

Most cloud masks are Clear Sky Masks

						l MODIS	S
		Clo	ud		Cloud Mask — (likelihood of — "not clear")		
Cle	ar						

Another Issue: What is a Pixel?

Moral of this story: what a mask is "masking" and what is meant by a "pixel" needs to be appreciated before worrying about the spectral and/or spatial information used in the mask.

Cloud amount depends on detection capability

The total detected cloud fraction is a function of cloud τ sensitivity

MODIS Cloud Detection

Cloud Mask Quality Flags

- Each test returns a confidence(F) ranging from 0 to 1.
- □ Similar tests are grouped and minimum confidence selected [min (F_i)]
- □ Four values; 0, >.66, >.95 and >.99

Quality flag defined as: $Q = \sqrt[N]{\prod_{i=1}^{N} \min(F_i)}$

What is a cloud?

Cloud τ threshold over land for Eloranta ground-based "Arctic" HSRL (a direct meas. of τ)

MOD35 (Cloud Mask) Algorithm & C5 Changes

(S. A. Ackerman, R. Frey)

MOD35/MYD35

- C5 Nighttime: less nighttime ocean clouds (less aggressive variability test), now using of Reynolds SST
- C5 Polar night: more clouds (7.3-11 μ m test)
- C5 Polar day: reduces cloud fraction, e.g., Greenland, Antarctica (3.9-11 μ m test)
- C5 Land night: using GDAS $T_{\rm sfc}$
- C5 Ocean day: detect more small trade Cu (0.86 μ m test), though more dust as cloud

Detection limit for cirrus corresponds to optical thickness ~ 0.2-0.3

Differences in clear-sky detection

Differences in cloudy-sky detection

MOD06 Cloud-Top Property Retrievals & C5 Changes

(P. Menzel, S. A. Ackerman, R. Frey)

- MOD06/MYD06 Cloud-Top Properties
 - SDSs: Cloud_Top_Pressure, Cloud_Top_Temperature, Cloud_Effective_Emissivity, et. al day, night and combined
 - C5 has empirical radiometric bias corrections for the CO₂ bands, giving more accurate CO₂ slicing retrievals
 - Known Issues: Low clouds (thermal window retrieval) can have low pressure bias in strong inversions (e.g., marine Sc), biases from multilayer cloud scenes, ...

Differences in cloud height

Derived cloud top altitude comparison

As expected, for thin clouds, the MODIS (IR passive approach) is sensitive to a layer below the physical cloud top.

Differences in cloud height

MODIS Marine Stratus Cloud Height Over-Estimation found and fixed

Differences in cloud height

MODIS Marine Stratus Cloud Height Over-Estimation found and fixed (Minnis et al. approach)

Differences in high (CALIOP>5 km) cloud height

Some differences in cloud height expected

A schematic of the lidar integrated cloud optical depth at the level of the passive IR cloud top retrieval.

MODIS Cloud Optical, Microphysical Product: MOD06

(M. D. King, S. Platnick, J. Riedi, G. Wind, B. Wind, E. Moody, M. Gray, P. Yang, et al.)

- Optical thickness (τ_c) , effective particle radius (r_e) , water path, phase (Cloud_Phase_Optical_Properties)
- 1 km spatial resolution, daytime only, liquid water & ice clouds
- Global: retrievals over land, ocean, and snow/sea ice surfaces
- 2-channel solar reflectance algorithm
 - standard retrievals
 - 1 non-absorbing band: 0.65 (land), 0.86 (ocean), 1.2 μ m (snow/ice) + each of following absorbing bands: 1.6, 2.1, 3.7 μ m => 1 τ , 3 $r_{\rm e}$ retrievals
 - 2.1 µm combination is the "primary" retrieval (Cloud_Optical_Thickness, Cloud_Effective_Radius, Cloud_Water_Path)
 - $r_{\rm e}$ from other absorbing bands given as differences (**Effective_Radius_Difference**)
 - 1.6, 2.1 μm band combination used over snow/ice and water surfaces (SDS names: *_1621)
- Ancillary data: cloud mask, cloud-top pressure/temperature, NCEP GDAS, global spectral albedo maps, snow/ice maps, ...

Optical/Microphysical Retrieval Issues

Critical issues (especially for global processing):

- To retrieve or not to retrieve?
- Cloud thermodynamic phase: liquid water or ice libraries?
- Ice cloud models.
- Multilayer/multiphase scenes: detectable?
- Surface spectral albedo, including ancillary information regarding snow/ice extent.
- Atmospheric correction: requires cloud top pressure, ancillary information regarding atmospheric moisture & temperature profiles.
- Cloud-top temperature, ancillary surface temperature: needed for $3.7 \mu m$ emission (band contains solar and emissive radiance).
- 3D cloud effects.

Some MOD06 Optical/Microphysical Collection 5 Changes

(http://modis-atmos.gsfc.nasa.gov/products_C005update.html)

- New "Clear Sky Restoral" algorithm implemented after cloud mask (to identify pixels incorrectly identified as cloud or partly-cloudy pixels).
- Updated cloud phase algorithm (still a difficult problem)!
- New ice cloud models (Baum et al. 2005).
- New research-level multilayer cloud flag. Level-3 code separately aggregates single layer and multilayer cloud fraction, as well as single layer retrievals.
- New MODIS-derived global snow-free land surface spectral albedo maps; snow/ice spectral albedo maps for Antarctica, Greenland; hemispheric average ecosystem-based snow/ice albedo over land and for sea ice; new IGBP ecosystem map. Available for download on Atmosphere team web site.
- New 1.6-2.1 μ m retrievals over ocean and snow/ice surfaces.
- New pixel-level τ , $r_{\rm e}$, WP retrieval uncertainties (baseline) and estimates of uncertainty of L3 means.

Example MODIS Data Granule Canadian Fires, MODIS Terra, 7 July 2002

Example MODIS Data Granule

Canadian Fires, MODIS Terra, 7 July 2002

ice

true color

SWIR composite

Optical Thickness, Effective Radius Retrievals

"partial" retrievals in C5 (not aggregated to L3)

Retrieval Uncertainty Estimates

Error sources: cal./fwd. model (5%), sfc. albedo(15%), atmo. correction (20% PW_c)

Ship Tracks: Ex. of Aerosol-Cloud Interactions

Aerosol-Cloud Interactions

Ship Track Schematic

RC-10 photograph, NASA ER-2 High Altitude Aircraft MAST Experiment, June 2004

unidentified container ship off Monterey Bay, CA, June 2004

Aerosol-Cloud Interactions

MODIS Aqua retrievals, 27 January 2003

Aerosol-Cloud Interactions

MODIS Aqua retrievals, 27 January 2003

Water Path Retrieval Example A Derived Quantity

In general:

$$R_{\lambda} = R(\tau_{\lambda}, \varpi_{\lambda}, g_{\lambda})$$

For ice clouds, 3 optical variables can perhaps(?) be reduced to 1 optical and 2 microphysical:

$$R_{\lambda} \approx R(\tau_{\lambda_0}, r_e, habit\ mixture)$$

if
$$r_e \equiv \frac{3}{4} \frac{\langle V \rangle}{\langle A_{cs} \rangle} \Rightarrow IWP = \frac{4\rho_i}{3Q_e(\lambda_0, r_e)} \tau_{\lambda_0} r_e$$

Assumption: vertically homogenous cloud layer, i.e., $N_r r_e \neq f(z)$

MODIS Aqua Example
20 Aug 2006, Central Am./NW SA, true color composite

MODIS Aqua Example, cont.

IWP, LWP, and Baseline Uncertainty Estimate

Error sources: calibration/forward model, surface albedo, atmospheric correction

MODIS Aqua Example, cont.

Uncertainty vs. IWP: Ocean Pixels Only

MODIS Aqua Example, cont.

Uncertainty vs. IWP: Ocean Pixels Only

Issues with Multilayer Clouds

Observations: CRYSTAL-FACE (23 July, Track 8)

Multilayer Flag - A Research Product

- Multilayers of different phases: disagreement between IR-phase retrieval and phase derived for optical/microphysical retrieval (SWIR bands, cloud mask tests, ...).
- General multilayer: 0.94 µm water vapor absorption band.

Multilayer Flag, cont. MODIS Aqua, 15 June 2006, 0415 UTC

RGB composite

Ice Particle Profiles from Tropical Cirrus Anvils

Replicator Particle Habits

Simulated Particle Habits

MODIS Collection 5 Ice Model Single Scattering Albedo

(from Baum et al., JAS, 2005)

Can replicate the MODIS Version 1 properties by arbitrarily increasing the number of small particles for a set of particle size distributions (from a CRYSTAL case of very high level cirrus near the tropopause)

0.2

Surface Albedo (0.86 µm)

0.0

0.3

0.4

0.5

Spectral Surface Albedo Examples

Spatially complete "white-sky" albedo in the MODIS 0.86 μ m band for four 16-day periods in 2002 (after Moody et al. 2005a).

Northern hemisphere multi-year average white-sky spectral snow albedo as a function of selected IGBP ecosystem classifications from 2000-2004 MOD43B3 data (after Moody et al. 2006b).

Gridded Level-3 Joint Atmosphere Products

(M. D. King, S. Platnick, P. A. Hubanks – NASA GSFC)

- Daily, 8-day, and monthly products (97, 255, 255 MB)
 - 20-25% of the size of these products in Collection 4
 - Files contain more SDSs, but are stored with internal hdf compression
- 1° ×1° equal angle grid
- Statistics
 - Mean, standard deviation, minimum, maximum
 - QA mean, QA standard deviation
 - Cloud fraction, pixel counts
 - Log mean, log standard deviation (useful for cloud inhomogeneity studies)
 - Mean uncertainty, QA mean uncertainty
 - Marginal probability density functions for cloud properties
 - Histogram counts, confidence histograms
 - Joint probability density functions
 - Joint histograms between various cloud properties (e.g., cloud optical thickness vs. cloud-top pressure)

MODIS Atmosphere Team Daily Global (08_D3) Statistics

ex. table for "primary retrieval" Cloud Optical Properties (MOD/MYD06_L2)

Collection 5 Updates

Added

Renamed

Deleted

MODIS Atmosphere Level-3 Daily Prod Derived from L2 Cloud (06 L2) Cloud Optical Properties (Primary Retrieval) 58. Cloud_Optical_Thickness_Liquid 59. Cloud_Optical_Thickness_Ice 60. Cloud_Optical_Thickness_Undetermined 61. Cloud Optical Thickness Combined 62. Cloud_Optical_Thickness_ISCCP8 63. Cloud_Effective_Radius_Liquid 64. Cloud Effective Radius Ice 65. Cloud Effective Radius Undetermined 66. Cloud_Effective_Radius_Combined 67. Cloud Water Path Liquid 68. Cloud Water Path Ice 69. Cloud_Water_Path_Undetermined 70. Cloud Water Path Combined 71. Cloud_Phase_Optical_Properties (Primary Cloud Fraction) 72. Cloud Fraction Liquid 73. Cloud Fraction Ice 74. Cloud Fraction Undetermined 75. Cloud_Fraction_Combined

Full details at modis-atmos.gsfc.nasa.gov

California / California Current Regime Monthly Joint Histogram Counts of Liquid Water Clouds over Ocean

32°-40°N, 117°-125°W June 2003

MODIS Level-3 Daily Global Browse Images

modis-atmos.gsfc.nasa.gov

Monthly Mean Cloud Fraction (Cloud Mask)

(S. A. Ackerman, R. A. Frey et al. – Univ. Wisconsin)

April 2005 Aqua C5

Cloud_Fraction_Day_Mean_ Mean

Cloud_Fraction_Night_Mean_ Mean

Monthly Mean Cloud-Top Properties

(W. P. Menzel, R. A. Frey et al. – Univ. Wisconsin)

April 2005 Aqua C5

Cloud_Top_Pressure_Mean_ Mean

Cloud_Top_Temperature_Mea n_Mean

Monthly Mean Cloud Optical Thickness

(M. D. King, S. Platnick et al. – NASA GSFC)

April 2005 Aqua C5 (QA mean)

Cloud_Optical_Thickness_Li quid_QA_Mean_Mean

Monthly Mean Cloud Effective Radius

(M. D. King, S. Platnick et al. – NASA GSFC)

April 2005 Aqua C5 (QA mean)

Cloud_Effective_Radius_Liquid_QA_Mean_Mean

Cloud_Effective_Radius_Ice_ QA_Mean_Mean

Monthly Mean IWP and Ice Cloud Fraction

Aqua, August 2006 (M. D. King, S. Platnick et al. – NASA GSFC)

Cloud_Water_Path_Ice_ QA_Mean_Mean

Cloud_Fraction_lce_ FMean

MODIS Aqua Collection 5, $\Delta \tau_{\rm c} / \tau_{\rm c}$ (%)

liquid water cloud daily aggregation,

1 April 2005

(assumption:
correlation between pixels =1)

liquid water cloud monthly aggregation, **April 2005**(assumption: daily uncertainties uncorrelated)

MODIS Aqua Collection 5, $\Delta r_{\rm e} / r_{\rm e}$ (%)

liquid water cloud daily aggregation, **1 April 2005**

liquid water cloud monthly aggregation, **April 2005**

MODIS Aqua Collection 5 Multilayer Cloud Flag, Monthly L3

Fraction of cloudy pixels (all phases) where the Multilayer Flag is set

